jueves, 23 de febrero de 2012


CIRCUITO EN SERIE

Un circuito en serie es una configuración de conexión en la que los bornes o terminales de los dispositivos (generadores, resistencias, condensadores, interruptores, entre otros.) se conectan secuencialmente. La terminal de salida de un dispositivo se conecta a la terminal de entrada del dispositivo siguiente.
Siguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la salida del primero se conecta a la entrada del segundo. Una batería eléctrica suele estar formada por varias pilas eléctricas conectadas en serie, para alcanzar así el voltaje que se precise.
En función de los dispositivos conectados en serie, el valor total o equivalente se obtiene con las siguientes expresiones:
  • Para Generadores
TE Compon 07.svg TE Compon 07.svg TE Compon 07.svg
TE Compon 05.svg TE Compon 05.svg TE Compon 05.svg
   {V_{T}} = {V_1} + {V_2} + ... + {V_n}\,
   {I_{T}} = {I_1} = {I_2} = ... = {I_n}\,

  • Para Resistencias
TE Compon 01.svg TE Compon 01.svg TE Compon 01.svg
   {R_{T}} = {R_1} + {R_2} + ... + {R_n}\,

CIRCUITO EN PARALELO

El circuito eléctrico en paralelo es una conexión donde los puertos de entrada de todos los dispositivos (generadores, resistencias, condensadores, etc.) conectados coincidan entre sí, lo mismo que sus terminales de salida.
Siguiendo un símil hidráulico, dos tinacos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará a ambos a la vez. Las bombillas de iluminación de una casa forman un circuito en paralelo.
En función de los dispositivos conectados en paralelo, el valor total o equivalente se obtiene con las siguientes expresiones:

  • Para generadores

TE Conex 05.svg TE Compon 07.svg TE Conex 09.svg
TE Conex 07.svg TE Compon 07.svg TE Conex 11.svg
TE Conex 14.svg TE Compon 07.svg TE Conex 14.svg
TE Conex 05.svg TE Compon 05.svg TE Conex 09.svg
TE Conex 07.svg TE Compon 05.svg TE Conex 11.svg
TE Conex 14.svg TE Compon 05.svg TE Conex 14.svg
   {V_{T}} = {V_1} = {V_2} = ... = {V_n}\,
   {I_{T}} = {I_1} + {I_2} + ... + {I_n}\,

  • Para Resistencias
TE Conex 05.svg TE Compon 01.svg TE Conex 09.svg
TE Conex 07.svg TE Compon 01.svg TE Conex 11.svg
TE Conex 14.svg TE Compon 01.svg TE Conex 14.svg
   {1 \over R_{T}} = {1 \over R_1} + {1 \over R_2} + ... + {1 \over R_n}\,

LEY DE OHM

La ley de Ohm establece que la intensidad eléctrica que circula entre dos puntos de un circuito eléctrico es directamente proporcional a la tensión eléctrica entre dichos puntos, existiendo una constante de proporcionalidad entre estas dos magnitudes. Dicha constante de proporcionalidad es la conductancia eléctrica, que es inversa a la resistencia eléctrica.
La ecuación matemática que describe esta relación es:
 I=  {G} \cdot {V} = \frac{V}{R}

miércoles, 22 de febrero de 2012

CIRCUITOS ELECTRICOS

Un circuito es una red eléctrica (interconexión de dos o más componentes, tales como resistencias, inductores, condensadores, fuentes, interruptores y semiconductores) que contiene al menos una trayectoria cerrada. Los circuitos que contienen solo fuentes, componentes lineales (resistores, condensadores, inductores), y elementos de distribución lineales (líneas de transmisión o cables) pueden analizarse por métodos algebraicos para determinar su comportamiento en corriente directa o en corriente alterna. Un circuito que tiene componentes electrónicos es denominado un circuito electrónico. Estas redes son generalmente no lineales y requieren diseños y herramientas de análisis mucho más complejos.




MATERIAL AISLANTE

La diferencia de los distintos materiales es que los aislantes son materiales que presentan gran resistencia a que las cargas que lo forman se desplacen y los conductores tienen cargas libres y que pueden moverse con facilidad.
De acuerdo con la teoría moderna de la materia (comprobada por resultados experimentales), los átomos de la materia están constituidos por un núcleo cargado positivamente, alrededor del cual giran a gran velocidad cargas eléctricas negativas. Estas cargas negativas, los electrones, son indivisibles e idénticas para toda la materia.
En los elementos llamados conductores, algunos de estos electrones pueden pasar libremente de un átomo a otro cuando se aplica una diferencia de potencial (o tensión eléctrica) entre los extremos del conductor.


MATERIAL CONDUCTOR

Son materiales cuya resistencia al paso de la electricidad es muy baja. Los mejores conductores eléctricos son metales el cobre, el hierro y el aluminio los metales y sus aleaciones, aunque existen otros materiales no metálicos que también poseen la propiedad de conducir la electricidad, como el grafito o las disoluciones y soluciones salinas (por ejemplo, el agua de mar) o cualquier material en estado de plasma.


viernes, 17 de febrero de 2012

CONDENSADOR DE LENTEJA

Cerámico "de lenteja" o "de disco". Son los cerámicos más corrientes. Sus valores de capacidad están comprendidos entre 0.5 pF y 47 nF. En ocasiones llevan sus datos impresos en forma de bandas de color.
Aquí abajo vemos unos ejemplos de condensadores de este tipo.



CONDENSADORES

Un condensador o (llamado en inglés capacitor, nombre por el cual también se le conoce frecuentemente dentro del ámbito de la electrónica y otras ramas de la física aplicada), es un dispositivo pasivo, utilizado en electricidad y electrónica, capaz de almacenar energía sustentando un campo eléctrico. Está formado por un par de superficies conductoras, generalmente en forma de láminas o placas, en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra) separadas por un material dieléctrico o por el vacío.









jueves, 16 de febrero de 2012

DIODO LED

Un led[1] (de la sigla inglesa LED: Light-Emitting Diode: "diodo emisor de luz", también "diodo luminoso") es un diodo semiconductor que emite luz. Se usan como indicadores en muchos dispositivos, y cada vez con mucha más frecuencia, en iluminación. Presentado como un componente electrónico en 1962, los primeros ledes emitían luz roja de baja intensidad, pero los dispositivos actuales emiten luz de alto brillo en el espectro infrarrojo, visible y ultravioleta .